Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 1215 - 1245 | |
DOI | https://doi.org/10.1051/ro/2025035 | |
Published online | 25 April 2025 |
- G.R. Amin and M. Ibn Boamah, Modeling business partnerships: a data envelopment analysis approach. Eur. J. Oper. Res. 305 (2023) 329–337. [CrossRef] [Google Scholar]
- G.R. Amin, A. Emrouznejad and S. Gattoufi, Modelling generalized firms’ restructuring using inverse DEA. J. Prod. Anal. 48 (2017) 51–61. [Google Scholar]
- H. Azizi, S. Kordrostami and A. Amirteimoori, Slacks-based measures of efficiency in imprecise data envelopment analysis: an approach based on data envelopment analysis with double frontiers. Comput. Ind. Eng. 79 (2015) 42–51. [CrossRef] [Google Scholar]
- R.D. Banker, Estimating most productive scale size using data envelopment analysis. Eur. J. Oper. Res. 17 (1984) 35–44. [Google Scholar]
- A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logistics Q. 9 (1962) 181–186. [Google Scholar]
- L. Chen and Y.M. Wang, Limitation and optimization of inputs and outputs in the inverse data envelopment analysis under variable returns to scale. Expert Syst. App. 183 (2021) 115344. [CrossRef] [Google Scholar]
- A.H. Dar, S.K. Mathur and S. Mishra, The efficiency of Indian banks: a DEA, Malmquist and SFA analysis with bad output. J. Quant. Econ. 19 (2021) 653–701. [CrossRef] [PubMed] [Google Scholar]
- C.A. Denizer, M. Dinc and M. Tarimcilar, Financial liberalization and banking efficiency: evidence from Turkey. J. Prod. Anal. 27 (2007) 177–195. [CrossRef] [Google Scholar]
- D.K. Despotis and Y.G. Smirlis, Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 140 (2002) 24–36. [Google Scholar]
- A. Emrouznejad, G.R. Amin, M. Ghiyasi and M. Michali, A review of inverse data envelopment analysis: origins, development, and future directions. IMA J. Manage. Math. 34 (2023) 421–440. [Google Scholar]
- T. Entani, Y. Maeda and H. Tanaka, Dual models of interval DEA and its extension to interval data. Eur. J. Oper. Res. 136 (2002) 32–45. [Google Scholar]
- S. Gattoufi, G.R. Amin and A. Emrouznejad, A new inverse DEA method for merging banks. IMA J. Manage. Math. 25 (2014) 73–87. [Google Scholar]
- S. Ghobadi, Merging decision-making units with interval data. RAIRO-Oper. Res. 55 (2021) S1605–S1631. [CrossRef] [EDP Sciences] [Google Scholar]
- F. Guijarro, M. Martlnez-Gomez and D. Visbal-Cadavid, A model for sector restructuring through genetic algorithm and inverse DEA. Expert Syst. App. 154 (2020) 113422. [CrossRef] [Google Scholar]
- A. Hadi-Vencheh, A. Asghar Foroughi and M. Soleimani-damaneh, A DEA model for resource allocation. Econ. Model. 25 (2008) 983–993. [CrossRef] [Google Scholar]
- X. Hu, J. Li, X. Li and J. Cui, A revised inverse data envelopment analysis model based on radial models. Mathematics 8 (2020) 803. [CrossRef] [Google Scholar]
- G.R. Jahanshahloo, A. Hadi Vencheh, A.A. Foroughi and R. Kazemi Matin, Inputs/outputs estimation in DEA when some factors are undesirable. Appl. Math. Comput. 156 (2004) 19–32. [MathSciNet] [Google Scholar]
- G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, M. Rostamy-Malkhalifeh and S. Ghobadi, Using Enhanced Russell model to solve inverse data envelopment analysis problems. Sci. World J. 2014 (2014) 571896. [CrossRef] [Google Scholar]
- C. Kao, Interval efficiency measures in data envelopment analysis with imprecise data. Eur. J. Oper. Res. 174 (2006) 1087–1099. [CrossRef] [Google Scholar]
- S. Kumar and R. Gulati, Measuring efficiency, effectiveness and performance of Indian public sector banks. Int. J. Prod. Perform. Manage. 59 (2009) 51–74. [CrossRef] [Google Scholar]
- S. Lertworasirikul, P. Charnsethikul and S.C. Fang, Inverse data envelopment analysis model to preserve relative efficiency values: the case of variable returns to scale. Comput. Ind. Eng. 61 (2011) 1017–1023. [Google Scholar]
- D.J. Lim, Inverse DEA with frontier changes for new product target setting. Eur. J. Oper. Res. 254 (2016) 510–516. [CrossRef] [Google Scholar]
- F.H. Lotfi, G.R. Jahanshahloo and M. Esmaeili, Classification of decision making units with interval data using SBM model. Appl. Math. Sci. 1 (2007) 681–689. [Google Scholar]
- Y.M. Wang, R. Greatbanks and J.B. Yang, Interval efficiency assessment using data envelopment analysis. Fuzzy Sets Syst. 153 (2005) 347–370. [Google Scholar]
- Q. Wei, J. Zhang and X. Zhang, An inverse DEA model for inputs/outputs estimate. Eur. J. Oper. Res. 121 (2000) 151–163. [Google Scholar]
- A. Younesi, F.H. Lotfi and M. Arana-Jimenez, Using slacks-based model to solve inverse DEA with integer intervals for input estimation. Fuzzy Optim. Decis. Making 22 (2023) 587–609. [CrossRef] [MathSciNet] [Google Scholar]
- X.S. Zhang and J.C. Cui, A project evaluation system in the state economic information system of China an operations research practice in public sectors. Int. Trans. Oper. Res. 6 (1999) 441–452. [CrossRef] [Google Scholar]
- M. Zhang and J.-C. Cui, The extension and integration of the inverse DEA method. J. Oper. Res. Soc. 67 (2016) 1212–1220. [CrossRef] [Google Scholar]
- G.J. Zhang and J.C. Cui, A general inverse DEA model for non-radial DEA. Comput. Ind. Eng. 142 (2020) 106368. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.