Open Access
| Issue |
RAIRO-Oper. Res.
Volume 59, Number 5, September-October 2025
|
|
|---|---|---|
| Page(s) | 3079 - 3116 | |
| DOI | https://doi.org/10.1051/ro/2025115 | |
| Published online | 20 October 2025 | |
- B. Adenso-Diaz and S. Lozano, A metafrontier analysis approach for assessing the efficiency of freight service providers. Int. J. Syst. Sci.-Oper. Logistics 10 (2023) 2177896. [Google Scholar]
- E. Alda, V. Gimènez, I.G. Paz Castro and A.I. Zamora Torres, Modernization plans for the Mexican customs system: have they really worked? A productivity impact assessment. Appl. Econ. 56 (2024) 796–811. [Google Scholar]
- J. Aparicio and J.T. Pastor, Closest targets and strong monotonicity on the strongly efficient frontier in DEA. Omega 44 (2014) 51–57. [Google Scholar]
- J. Aparicio, J.L. Ruiz and I. Sirvent, Closest targets and minimum distance to the Pareto-efficient frontier in DEA. J. Prod. Anal. 28 (2007) 209–218. [CrossRef] [Google Scholar]
- C.Q. Bai, Z.J. Chen and D.P. Wang, Transportation carbon emission reduction potential and mitigation strategy in China. Sci. Total Environ. 873 (2023) 162074. [Google Scholar]
- W.W. Cooper, K.S. Park and J.T. Pastor, RAM: a range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. J. Prod. Anal. 11 (1999) 5–42. [CrossRef] [Google Scholar]
- R. Chambers, Y.H. Chung and R. F¨are, Profit, Directional distance functions, and Nerlovian efficiency. J. Optim. Theory App. 98 (1998) 351–364. [CrossRef] [Google Scholar]
- L. Chen and Y.M. Wang, Game directional distance function in meta-frontier data envelopment analysis. Omega 121 (2023) 102935. [Google Scholar]
- L. Chen, Y.M. Wang and F.J. Lai, Semi-disposability of undesirable outputs in data envelopment analysis for environmental assessments. Eur. J. Oper. Res. 260 (2016) 655–664. [Google Scholar]
- Y. Chen, W. Xu, Q. Zhou and Z. Zhou, Total factor energy efficiency, carbon emission efficiency, and technology gap: evidence from sub-industries of Anhui Province in China. Sustainability 12 (2020) 1402. [Google Scholar]
- Y. Chen, M.Y. Wang, C.P. Feng, H. Zhou and K. Wang, Total factor energy efficiency in Chinese manufacturing industry under industry and regional heterogeneities. Res. Conserv. Recycl. 168 (2021) 105255. [Google Scholar]
- Y.H. Chung, R. F¨are and S. Grosskopf, Productivity and undesirable outputs: a directional distance function approach. J. Environ. Manage. 51 (1997) 229–240. [CrossRef] [Google Scholar]
- A. Emrouznejad, M. Marra, G.L. Yang and M. Michali, Eco-efficiency considering NetZero and data envelopment analysis: a critical literature review. IMA J. Manage. Math. 34 (2023) 599–632. [Google Scholar]
- A. Emrouznejad, L. Brzezicki and C.X. Lu, Development and evolution of slacks-based measure models in Data Envelopment Analysis: a comprehensive review of the literature. J. Econ. Surv. (2025). DOI: 10.1111/joes.12682. [Google Scholar]
- R. F¨are, S. Grosskopf, C. Lovell and C. Pasurka, Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. Rev. Econ. Stat. 71 (1989) 90–98. [CrossRef] [Google Scholar]
- M.C. Gouveia and C.O. Henriques, Assessing potential reductions of agricultural GHG in countries with different land productivities: long-term integrated efficiency in DEA hybrid meta-frontier model. Sustain. Energy Technol. Assess. 81 (2025) 104430. [Google Scholar]
- R. Gulati, V. Charles and S. Kumar, School education development index: a meta-frontier range directional measure benefit-of-the-doubt model. Soc.-Econ. Planning Sci. 92 (2024) 101823. [Google Scholar]
- X. Guo and L. Chen, Double shared ratio selection of two-stage meta-frontier DEA methods based on shared input. Comput. Appl. Math. 44 (2025) 319. [Google Scholar]
- X. Guo and L. Chen, Positive/negative effects of undesirable output on technology gap ratio under meta-frontier framework (2025). Code in a Zenodo repository: https://doi.org/10.5281/zenodo.15173171. [Google Scholar]
- X. Guo and L. Chen, Extension and improvement of three-level meta-frontier framework based on multiple combined projection methods. Comput. Appl. Math. 43 (2024) 314. [Google Scholar]
- X. Guo, L. Chen, J.C. Wang and L. Liao, The impact of disposability characteristics on carbon efficiency from a potential emissions reduction perspective. J. Clean. Prod. 408 (2023) 137180. [Google Scholar]
- K. He and L. Jie, Evaluation of the eco-efficiency of the industrial system in China considering regional heterogeneity and dynamics. Oper. Res. 25 (2025) 2. [Google Scholar]
- H.S. Lee, Variable range measure: a new range measure for super-efficiency model based on DDF in presence of nonpositive data. Omega 134 (2025) 103295. [Google Scholar]
- X.C. Li, F. Li, N.G. Zhao and Q. Zhu, Measuring environmental sustainability performance of freight transportation seaports in China: a data envelopment analysis approach based on the closest targets. Expert Syst. 37 (2020) e12334. [Google Scholar]
- F. Li, P. Zhu, L. Liang and G. Kou, A two-stage DEA efficiency evaluation approach based on closest targets. Chin. Manage. Sci. 30 (2022) 198–209. [Google Scholar]
- R.Y. Lin and Z.X. Li, Infeasibility conditions and resolution strategies for super-efficiency models under weak disposability and null-jointness: a directional distance function approach with endogenous directions. Eur. J. Oper. Res. 326 (2025) 585–596. [Google Scholar]
- S. Lozano, E. Gutiérrez and E. Aguilera, Environmental efficiency of rainfed and irrigated wheat crops in Spain. A stochastic DEA metafrontier approach. OR Spect. (2024). DOI: 10.1007/s00291-024-00791-x. [Google Scholar]
- L.C. Lu, S.Y. Chiu, Y.H. Chiu, T.H. Chang and W. Tang, Energy performance of European countries by considering the role of forest. Environ. Sci. Pollut. Res. 29 (2022) 44162–44174. [Google Scholar]
- Y.S. Luo, L. Xu and C. Wu, Internet development and regional innovation efficiency: the moderating effect of intellectual property protection. Technol. Anal. Strat. Manage. 36 (2024) 3147–3165. [Google Scholar]
- A. Mergoni, A.R. Dipierro and C. Colamartino, European agricultural sector: the tortuous path across efficiency, sustainability and environmental risk. Soc.-Econ. Planning Sci. 92 (2024) 101848. [Google Scholar]
- A. Mergoni, A. Emrouznejad and K. De Witte, Fifty years of Data Envelopment Analysis. Eur. J. Oper. Res. 326 (2025) 389–412. [Google Scholar]
- M.A.T. Nguyen and M.M. Yu, Disentangling technology gap using a non-convex three-hierarchy meta-frontier framework: insights into the contemporary cruise segment. Appl. Econ. (2025) 1–17. DOI: 10.1080/00036846.2025.2449617. [Google Scholar]
- C. O’Donnell, D. Rao and G. Battese, Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empirical Econ. 34 (2008) 231–255. [CrossRef] [Google Scholar]
- T.S. Olasehinde, F.B. Qiao and S.P. Mao, Impact of improved maize varieties on production efficiency in Nigeria: separating technology from managerial gaps. Agric.-Basel 13 (2023) 611. [Google Scholar]
- M.C.A.S. Portela, P.C. Borges and E. Thanassoulis, Finding closest targets in non-oriented DEA models: the case of convex and non-convex technologies. J. Prod. Anal. 19 (2003) 251–269. [Google Scholar]
- K. Tone and M. Tsutsui, Dynamic DEA: a slacks-based measure approach. Omega 38 (2010) 145–156. [CrossRef] [Google Scholar]
- Q.W. Wang, B. Su, P. Zhou and C.R. Chiu, Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: a modified approach. Energy Econ. 56 (2016) 475–482. [Google Scholar]
- Q.W. Wang, Y. Hang, J.L. Hu and C.R. Chiu, An alternative metafrontier framework for measuring the heterogeneity of technology. Nav. Res. Logistics 65 (2018) 427–445. [Google Scholar]
- F.Q. Wei, X.Q. Zhang, J.F. Chu, F. Yang and Z. Yuan, Energy and environmental efficiency of China’s transportation sectors considering CO2 emission uncertainty. Transp. Res. Part D-Transp. Environ. 97 (2021) 102955. [Google Scholar]
- J. Wu, Y.F. Yu, Q.Y. Zhu, Q. An and L. Liang, Closest target for the orientation-free context-dependent DEA under variable returns to scale. J. Oper. Res. Soc. 69 (2018) 1819–1833. [Google Scholar]
- H.J. Xiao, Y. Zhou, N. Zhang, D. Wang, Y. Shan and J. Ren, CO2 emission reduction potential in China from combined effects of structural adjustment of economy and efficiency improvement. Res. Conserv. Recycl. 174 (2021) 105760. [Google Scholar]
- L. Yang, S.Y. Chen, Y.H. Chiu, T.H. Chang and Y. Wang, Reassessment of industrial eco-efficiency in China under the sustainable development goals: a meta two-stage parallel entropy dynamic DDF-DEA model. J. Clean. Prod. 447 (2024) 141275. [Google Scholar]
- M.M. Yu and I. Rakshit, How to establish input and output targets for airlines with heterogeneous production technologies: a nash bargaining DEA approach within the meta-frontier framework. J. Air Transp. Manage. 116 (2024) 102576. [Google Scholar]
- M.M. Yu, K.F. See and B. Hsiao, Integrating group frontier and metafrontier directional distance functions to evaluate the efficiency of production units. Eur. J. Oper. Res. 301 (2022) 254–276. [Google Scholar]
- W.W. Zhu, Z.W. Bai and Y. Yu, A super-efficiency model based on the directional distance function under a new direction. Oper. Res. 25 (2025) 20. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
