Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 5, September-October 2025
Page(s) 3069 - 3077
DOI https://doi.org/10.1051/ro/2025112
Published online 20 October 2025
  • S. Akbari, E.R. van Dam and M.H. Fakharan, Trees with a large Laplacian eigenvalue multiplicity. Linear Algebra Appl. 586 (2020) 262–273. [Google Scholar]
  • M. Andelić and C.M. da Fonseca, Equitable partitions and spectra of symmetric trees: revisiting Heilbronner’s composition principle. Discrete Math. Lett. 14 (2024) 108–117. [Google Scholar]
  • C.M. da Fonseca, On the eigenvalues of some tridiagonal matrices. Comput. Appl. Math. 200 (2007) 283–286. [Google Scholar]
  • N.M.M. de Abreu, Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423 (2007) 53–73. [Google Scholar]
  • R. Grone, On the geometry and Laplacian of a graph. Linear Algebra Appl. 150 (1991) 167–178. [Google Scholar]
  • R. Grone, R. Merris and V.S. Sunder, The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990) 218–238. [Google Scholar]
  • J.-M. Guo, On the second largest Laplacian eigenvalue of trees. Linear Algebra Appl. 404 (2005) 251–261. [Google Scholar]
  • J.-M. Guo, On the Laplacian spectral radius of trees with fixed diameter. Linear Algebra Appl. 419 (2006) 618–629. [Google Scholar]
  • D.P. Jacobs, E.R. Oliveira and V. Trevisan, Most Laplacian eigenvalues of a tree are small. J. Comb. Theory Ser. B 146 (2021) 1–33. [Google Scholar]
  • J. Li and Y. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph. Linear Multilinear Algebra 48 (2000) 117–121. [Google Scholar]
  • J. Li, J.-M. Guo and W.C. Shiu, On the second largest Laplacian eigenvalues of graphs. Linear Algebra Appl. 438 (2013) 2438–2446. [Google Scholar]
  • R. Merris, Laplacian matrices of a graph: a survey. Linear Algebra Appl. 197/198 (1994) 143–176. [Google Scholar]
  • B. Mohar, The Laplacian spectrum of graphs, in Graph Theory, Combinatorics, and Applications, edited by Y. Alavi, G. Chartrand, O.R. Oellermann and A.J. Schwenk. Vol. 2. Wiley, New York (1991) 871–898. [Google Scholar]
  • M. Petrović, I. Gutman, M. Lepović and B. Milekić, On bipartite graphs with small number of Laplacian eigenvalues greater than two and three. Linear Multilinear Algebra 47 (2000) 205–215. [Google Scholar]
  • L. Xu and B. Zhou, Proof of a conjecture on distribution of Laplacian eigenvalues and diameter, and beyond. Linear Algebra Appl. 678 (2023) 92–106. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.