Free Access
Issue |
RAIRO-Oper. Res.
Volume 18, Number 4, 1984
|
|
---|---|---|
Page(s) | 381 - 401 | |
DOI | https://doi.org/10.1051/ro/1984180403811 | |
Published online | 06 February 2017 |
- 1. M. L. BALINSKI, An Algorithm for Finding all Vertices of Convex Polyhedral Sets, J. Soc. Indust. Appl. Math., vol. 9, n° 1, 1961, p. 72-88. [MR: 142057] [Zbl: 0108.33203] [Google Scholar]
- 2. A. CHARNES, Optimality and Degeneracy in Linear Programming, Econometrika, vol. 20, 1952, p. 160-170. [MR: 56264] [Zbl: 0049.37903] [Google Scholar]
- 3. A. CHARNES et W. W. COOPER, Management Models and Industrial Applications of Linear Programming, John Wiley and Sons, vol. 1, New York, 1961. [MR: 157773] [Zbl: 0107.37004] [Google Scholar]
- 4. N. V. CHERNIKOVA, Algorithm for Finding a General Formula for the Non-Negative Solutions of a System of Linear Inequalities, U.S.S.R. Computational Mathematics and Mathematical Physics, vol. V, 1965, p. 228-233. [Zbl: 0171.35701] [Google Scholar]
- 5. M. E. DYER et L. G. PROLL, Vertex Enumeration in Convex Polyhedra: A Comparative Computational Study, in T. B. BOFFEY, éd., Proc. CP77 Combinatorial Programming Conference, University of Liverpool, Liverpool, 1977, p. 23-43. [Google Scholar]
- 6. M. E. DYER et L. G. PROLL, An Improved Vertex Enumeration Algorithm, European Journal of Operational Research, vol. 9, 1982, p. 359-368. [MR: 655093] [Zbl: 0477.90035] [Google Scholar]
- 7. R. FAURE, La programmation linéaire appliquée, Que sais-je ?, n° 1776, P.U.F., Paris, 1979. [Google Scholar]
- 8. R. FAURE, Précis de recherche opérationnelle (4e éd. entièrement refondue d'Éléments de la Recherche Opérationnelle, 1968), Dunod, Paris, 1979. [Google Scholar]
- 9. T. GAL et J. NEDOMA, Multiparametric Linear Programming, Management Science, vol. 18, 1972, p. 406-422. [MR: 292502] [Zbl: 0237.90037] [Google Scholar]
- 10. T. GAL, Postoptimal Analyses, Parametric Programming, and Related Topics, MacGraw Hill, New York, 1979. [MR: 536349] [Zbl: 0407.90052] [Google Scholar]
- 11. H. GREENBERG, An Algorithm for Determining Redundant Inequalities and all Solutions to Convex Polyhedra, Numerische Mathematik, vol. 24, 1975, p. 19-26. [EuDML: 132322] [MR: 426423] [Zbl: 0288.65041] [Google Scholar]
- 12. G. HADLEY, Linear Programming, Addison-Wesley, Reading, Massachusetts, 1962. [MR: 135622] [Zbl: 0102.36304] [Google Scholar]
- 13. J. P. IGNIZIO, Goal Programming and Extensions, Lexington Books, D.C. Heath and Company, Massachusetts, 1976. [Google Scholar]
- 14. V. KLEE, On the Number of Vertices of a Convex Polytope, Canadian Journal of Mathematics, vol. 16, 1964, p. 701-720. [MR: 166682] [Zbl: 0128.17201] [Google Scholar]
- 15. M. MANAS et J. NEDOMA, Finding all Vertices of a Convex Polyhedron, Numerische Mathematik, vol. 14, 1968, p. 226-229. [EuDML: 131868] [MR: 235705] [Zbl: 0165.51801] [Google Scholar]
- 16. T. H. MATTHEISS, An Algorithm for Determining Irrelevant Constraints and all Vertices in Systems of Linear Inequalities, Operations Research, vol. 21, 1973, p. 247-260. [MR: 437087] [Zbl: 0265.90024] [Google Scholar]
- 17. T. H. MATTHEISS et D. S. RUBIN, A Survey and Comparison of Methods for Finding all Vertices of Convex Polyhedral Sets, Mathematics of Operations Research, vol. 5, 1980, p. 167-185. [MR: 571811] [Zbl: 0442.90050] [Google Scholar]
- 18. T. S. MOTZKIN, H. RAIFFA, G. L. THOMPSON et R. M. THRALL, The Double Description Method, in: H. W. KUHN et A. W. TUCKER, éds., Contributions to the Theory of Games, vol. 2, Princeton University Press, Princeton, New Jersey, 1953. [MR: 60202] [Zbl: 0050.14201] [Google Scholar]
- 19. A. OMAR, Finding all Extreme Points and Extreme Rays of a Convex Polyhedral Set, Ekonomicko-Matematicky, Obzor, vol. 3, 1977, p. 331-342. [MR: 470864] [Zbl: 0372.90077] [Google Scholar]
- 20. M. RIZZI, Une nouvelle méthode d'aide à la décision en avenir incertain, R.A.I.R.O. Recherche Opérationnelle, vol. 16, n° 4, 1982, p. 391-405. [EuDML: 104823] [Zbl: 0506.90043] [Google Scholar]
- 21. P. ROSENSTIEHL, Labyrinthologie mathématique, Mathématiques et Sciences Humaines, 9e année, n° 33, 1971, p. 5-32. [EuDML: 94079] [MR: 316278] [Zbl: 0228.05127] [Google Scholar]
- 22. J. SISKOS, Comment modéliser les préférences au moyen de fonctions d'utilité additives, R.A.I.R.O. Recherche Opérationnelle, vol. 14, n° 1, 1980, p. 53-82. [EuDML: 104748] [Zbl: 0436.90005] [Google Scholar]
- 23. J. SISKOS, Application de la méthode UTAI à un problème de sélection de points de vente mettant en jeu des critères multiples, R.A.I.R.O. Recherche Opérationnelle, vol. 17, n° 2, 1983, p. 121-136. [EuDML: 104829] [Google Scholar]
- 24. G. TARRY, Le problème des labyrinthes, Nouvelles Annales de Mathématiques, vol. XIV, 1895, p. 187-190. [EuDML: 100932] [Zbl: 26.0257.02] [JFM: 26.0645.02] [Google Scholar]
- 25. C. VAN DE PANNE, Methods for Linear and Quadratic Programming, North-Holland Publishing Company, Amsterdam, 1975. [MR: 439021] [Zbl: 0348.90094] [Google Scholar]
- 26. H. M. WINKELS, A Flexible Decision Aid Method for Linear Multicriteria Systems, in: M. GRAUER, A. LEWANDOWSKI et A. P. WIERZBICKI, éds., Multiobjective and Stochastic Optimization, I.I.A.S.A. Collaborative Proceedings Series CP-82-812, Laxenburg (Austria), 1982, p. 377-410. [Google Scholar]
- 27. H. M. WINKELS et R. COLMAN, Visualization of 5 Dimensional Polyhedra, Working paper on economathematics n° 8209, Ruhr-Universität Bochum, 1982. [Google Scholar]
- 28. M. ZELENY, Linear Multiobjective Programming, Springer-Verlag, Berlin, 1974. [MR: 351440] [Zbl: 0325.90033] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.