Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 3675 - 3696 | |
DOI | https://doi.org/10.1051/ro/2024155 | |
Published online | 10 September 2024 |
- E.W. Anderson, L.P. Hansen and T.J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection. J. Eur. Econ. Assoc. 1 (2003) 68–123. [CrossRef] [Google Scholar]
- Y. Bai, Z. Zhou, H. Xiao, R. Gao and F. Zhong, A hybrid stochastic differential reinsurance and investment game with bounded memory. Eur. J. Oper. Res. 296 (2022) 717–737. [CrossRef] [Google Scholar]
- I.D. Baltas, N.E. Frangos and A.N. Yannacopoulos, Optimal investment and reinsurance policies in insurance markets under the effect of inside information. Appl. Stoch. Model. Bus. Ind. 28 (2012) 506–528. [CrossRef] [Google Scholar]
- N. Barberis, R. Greenwood, L. Jin and A. Shleifer, X-CAPM: an extrapolative capital asset pricing model. J. Finan. Econ. 115 (2015) 1–24. [CrossRef] [Google Scholar]
- A. Bensoussan, C.C. Siu, S.C.P. Yam and H. Yang, A class of non-zero-sum stochastic differential investment and reinsurance games. Automatica 50 (2014) 2025–2037. [CrossRef] [MathSciNet] [Google Scholar]
- J. Bi, J. Cai and Y. Zeng, Equilibrium reinsurance-investment strategies with partial information and common shock dependence. Ann. Oper. Res. 307 (2021) 1–24. [Google Scholar]
- J. Bi, D. Li and N. Zhang, Equilibrium reinsurance-investment strategy with a common shock under two kinds of premium principles. RAIRO OR. 56 (2022) 1–22. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Cao, D. Li, V.R. Young and B. Zou, Stackelberg differential game for insurance under model ambiguity. Insur. Math. Econ. 106 (2022) 128–145. [CrossRef] [Google Scholar]
- Z. Chen and P. Yang, Robust optimal reinsurance-investment strategy with price jumps and correlated claims. Insur. Math. Econ. 92 (2020) 27–46. [CrossRef] [Google Scholar]
- H. Chen, S. Joslin and N.K. Tran, Rare disasters and risk sharing with heterogeneous beliefs. Rev. Finan. Stud. 25 (2012) 2189–2224. [CrossRef] [Google Scholar]
- K.C. Cheung, S.C.P. Yam, F.L. Yuen and Y. Zhang, Concave distortion risk minimizing reinsurance design under adverse selection. Insur. Math. Econ. 91 (2020) 155–165. [CrossRef] [Google Scholar]
- M. Denuit, M. Guillen and J. Trufin, Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data. Ann. Actuar. Sci. 13 (2019) 378–399. [CrossRef] [Google Scholar]
- D. Ellsberg, Risk, ambiguity, and the savage axioms. Q. J. Econ. 75 (1961) 643–669. [CrossRef] [Google Scholar]
- S. Gal and M. Landsberger, On “small sample” properties of experience rating insurance contracts. Q. J. Econ. 103 (1988) 233–243. [CrossRef] [Google Scholar]
- C. Gollier, Optimal insurance design of ambiguous risks. Econ. Theory 57 (2014) 555–576. [CrossRef] [Google Scholar]
- J. Grandell, Aspects of Risk Theory. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
- A. Gu, F.G. Viens and Y. Shen, Optimal excess-of-loss reinsurance contract with ambiguity aversion in the principalagent model. Scand. Actuar. J. 2020 (2020) 342–375. [CrossRef] [Google Scholar]
- D. Hu and H. Wang, Optimal proportional reinsurance with a loss-dependent premium principle. Scand. Actuar. J. 2019 (2019) 752–767. [CrossRef] [Google Scholar]
- D. Hu, S. Chen and H. Wang, Robust reinsurance contracts in continuous time. Scand. Actuar. J. 2018 (2018) 1–22. [CrossRef] [Google Scholar]
- D. Hu, S. Chen and H. Wang, Robust reinsurance contracts with uncertainty about jump risk. Eur. J. Oper. Res. 266 (2018) 1175–1188. [CrossRef] [Google Scholar]
- L.D. Iglehart, Diffusion approximations in collective risk theory. J. Appl. Probab. 6 (1969) 285–292. [Google Scholar]
- B.G. Jang, K.T. Kim and H.T. Lee, Optimal reinsurance and portfolio selection: comparison between partial and complete information models. Eur. Finan. Manag. 28 (2022) 208–232. [CrossRef] [Google Scholar]
- E.L. Jean-Baptiste and A.M. Santomero, The design of private reinsurance contracts. J. Finan. Intermed. 9 (2000) 274–297. [CrossRef] [Google Scholar]
- I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer Science and Business Media, Cham (1991). [Google Scholar]
- B. Li, D. Li and D. Xiong, Alpha-robust mean-variance reinsurance-investment strategy. J. Econ. Dyn. Control 70 (2016) 101–123. [Google Scholar]
- P.J. Maenhout, Robust portfolio rules and asset pricing. Rev. Finan. Stud. 17 (2004) 951–983. [CrossRef] [Google Scholar]
- P.J. Maenhout, Robust portfolio rules and detection-error probability for a mean-reverting risk premium. J. Econ. Theory 128 (2006) 136–163. [CrossRef] [Google Scholar]
- R.J. Meyer, Failing to learn from experience about catastrophes: the case of hurricane preparedness. J. Risk Uncertainty 45 (2012) 25–50 [CrossRef] [Google Scholar]
- C. Munk and A. Rubtsov, Portfolio management with stochastic interest rates and inflation ambiguity. Ann. Finan. 10 (2014) 419–455. [CrossRef] [Google Scholar]
- J. Pinquet, Experience rating in nonlife insurance, in Handbook of Insurance. Springer (2013) 471–485. [Google Scholar]
- S.D. Promislow and V.R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift. N. Am. Actuar. J. 9 (2005) 110–128. [CrossRef] [Google Scholar]
- J. Saputra, T. Fauzia, S. Sukono and R. Riaman, Estimation of reinsurance risk value using the excess of loss method. Int. J. Bus. Econ. Soc. Dev. 1 (2020) 31–39. [CrossRef] [Google Scholar]
- H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting. Scand. Actuar. J. 2001 (2001) 55–68. [CrossRef] [Google Scholar]
- N. Wang and T.K. Siu, Robust reinsurance contracts with risk constraint. Scand. Actuar. J. 2020 (2020) 419–453. [CrossRef] [Google Scholar]
- R. Watt and F.J. Vazquez, Full insurance, Bayesian updated premiums, and adverse selection. Geneva. Papers. Risk. Insur. Theory 22 (1997) 135–150. [CrossRef] [Google Scholar]
- B. Yi, Z. Li, F.G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Hestons stochastic volatility model. Insur. Math. Econ. 53 (2013) 601–614. [CrossRef] [Google Scholar]
- B. Yi, F.G. Viens, Z. Li and Y. Zeng, Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria. Scand. Actuar. J. 2015 (2015) 725–751. [CrossRef] [Google Scholar]
- Y. Yuan, Z. Liang and X. Han, Robust reinsurance contract with asymmetric information in a stochastic Stackelberg differential game. Scand. Actuar. J. 2022 (2022) 328–355. [CrossRef] [Google Scholar]
- Y. Yuan, Z. Liang and X. Han, Robust optimal reinsurance in minimizing the penalized expected time to reach a goal. J. Comput. Appl. Math. 420 (2023) 114816. [CrossRef] [Google Scholar]
- Y. Zeng, D. Li and A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps. Insur. Math. Econ. 66 (2016) 138–152. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.