Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
Page(s) 3697 - 3714
DOI https://doi.org/10.1051/ro/2024137
Published online 10 September 2024
  • G. Alefeld and J. Herzberger, Introduction to Interval Computations. Academic Press, Orlando, Florida (1983). [Google Scholar]
  • M. Allahdadi and H. Mishmast Nehi, Solving the interval linear programming problems by a new approach. ICIC Express Lett. 11 (2017) 17–25. [Google Scholar]
  • M. Allahdadi, H. Mishmast Nehi, H.A. Ashayerinasab and M. Javanmard, Improving the modified interval linear programming method by new techniques. Inf. Sci. 339 (2016) 224–236. [CrossRef] [Google Scholar]
  • E.S. Ammar and A. Emsimir, A mathematical model for solving fuzzy integer linear programming problems with fully rough intervals. Granul. Comput. 6 (2021) 567–578. [CrossRef] [Google Scholar]
  • M. Arabani and M.A.L. Nashaei, Application of rough set theory as a new approach to simplify dams location. Sci. Iran. 13 (2006) 152–158. [Google Scholar]
  • H.A. Ashayerinasab, H. Mishmast Nehi and M. Allahdadi, Solving the interval linear programming problem: a new algorithm for a general case. Expert Syst. Appl. 93 (2018) 39–49. [CrossRef] [Google Scholar]
  • B.Y. Cao, Rough posynomial geometric programming. Fuzzy Inf. Eng. 1 (2009) 37–57. [CrossRef] [Google Scholar]
  • Z. Chen and W. Luo, An integrated interval type-2 fuzzy rough technique for emergency decision making. Appl. Soft Comput. 137 (2023) 110150. [CrossRef] [Google Scholar]
  • J.W. Chinneck and K. Ramadan, Linear programming with interval coefficient. J. Oper. Res. Soc. 51 (2002) 209–220. [Google Scholar]
  • F.A. Farahat and M.A. ElSayed, Achievement stability set for parametric rough linear goal programing problem. Fuzzy Inf. Eng. 11 (2019) 279–294. [CrossRef] [Google Scholar]
  • M. Feidler, J. Nedoma, J. Ramik, J. Rohn and K. Zimmermann, Linear Optimization Problems with Inexact Data. Springer, Berlin (2006). [Google Scholar]
  • H. Garg and R.M. Rizk-Allah, A novel approach for solving rough multi-objective transportation problem: development and prospects. Comput. Appl. Math. 40 (2021) 149. [CrossRef] [Google Scholar]
  • S. Ghosh and S.K. Roy, Fuzzy-rough multi-objective product blending fixed-charge transportation problem with truck load constraints through transfer station. RAIRO Oper. Res. 55 (2021) 2923–2952. [Google Scholar]
  • S. Greco, B. Matarazzo and R. Slowinski, Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129 (2001) 1–47. [CrossRef] [Google Scholar]
  • A. Hamzehee, M.A. Yaghoobi and M. Mashinchi, Linear programming with rough interval coefficients. J. Intell. Fuzzy Syst. 26 (2014) 1179–1189. [Google Scholar]
  • M. Hladik, Optimal value range in interval linear programming. Fuzzy Optim. Decis. Mak. 8 (2009) 283–294. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Hladik, How to determine basis stability in interval linear programming. Optim. Lett. 8 (2014) 375–389. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Kondo, On the structure of generalized rough sets. Inf. Sci. 176 (2006) 589–600. [CrossRef] [Google Scholar]
  • J. Krysinski, Rough sets in the analysis of the structure-activity relationships of antifungal imidazolium compounds. J. Pharm. Sci. 84 (1995) 243–248. [CrossRef] [Google Scholar]
  • S. Midya and S.K. Roy, Analysis of interval programming in different environments and its application to fixed-charge transportation problem. Discrete Math. Algorithms Appl. 9 (2017) 1750040. [CrossRef] [Google Scholar]
  • S. Midya and S.K. Roy, Multiobjective fixed-charge transportation problem using rough programming. Int. J. Oper. Res. 37 (2020) 377–395. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Midya, S.K. Roy and G.W. Weber, Fuzzy multiple objective fractional optimization in rough approximation and its aptness to the fixed-charge transportation problem. RAIRO Oper. Res. 55 (2021) 1715–1741. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Midya, S.K. Roy and V.F. Yu, Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. Int. J. Mach. Learn. Cybern. 12 (2021) 99–717. [Google Scholar]
  • Z. Pawlak, Rough sets. Int. J. Inf. Comput. Sci. 11 (1982) 341–356. [CrossRef] [Google Scholar]
  • M. Rebolledo, Rough intervals-enhancing intervals for qualitative modeling of technical systems. Artif. Intell. 170 (2006) 667–685. [CrossRef] [Google Scholar]
  • S. Rivaz and M.A. Yaghoobi, Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients. Cent. Eur. J. Oper. Res. 21 (2013) 625–649. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Rivaz and M.A. Yaghoobi, Some results in interval multiobjective linear programming for recognizing different solutions. Opsearch 52 (2015) 75–85. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Roy, S. Midya and V.F. Yu, Multi-objective fixed-charge transportation problem with random rough variables. Int. J. Uncertain. Fuzz. Knowl. Based Syst. 26 (2018) 971–996. [CrossRef] [Google Scholar]
  • S.K. Roy, S. Midya and G.W. Weber, Multi-objective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural Comput. Appl. 31 (2019) 8593–8613. [CrossRef] [Google Scholar]
  • M.R. Seikh, S. Dutta and D.F. Li, Solution of matrix games with rough interval pay-offs and its application in the telecom market share problem. Artif. Intell. 36 (2021) 6066–6100. [Google Scholar]
  • G. Temelcan, A solution algorithm for finding the best and the worst fuzzy compromise solutions of fuzzy rough linear programming problem with triangular fuzzy rough number coefficients. Granul. Comput. 8 (2023) 479489. [CrossRef] [Google Scholar]
  • Y. Weiguo, L. Mingyu and L. Zhi, Variable precision rough set based decision tree classifier. J. Intell. Fuzzy Syst. 23 (2012) 61–70. [CrossRef] [Google Scholar]
  • J. Xu and Z. Tao, Rough Multiple Objective Decision Making. Taylor and Francis Group, CRCPress, USA (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.