Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 3715 - 3732 | |
DOI | https://doi.org/10.1051/ro/2024106 | |
Published online | 24 September 2024 |
- J. Bagga and L. Beineke, New results and open problems in line graphs. AKCE Int. J. Graphs Comb. 19 (2022) 182–190. [CrossRef] [MathSciNet] [Google Scholar]
- E. Bampas, D. Bilò, G. Drovandi, L. Gualà, R. Klasing and G. Proietti, Network verification via routing table queries. J. Comput. System Sci. 81 (2015) 234–248. [CrossRef] [MathSciNet] [Google Scholar]
- D. Bauer and R. Tindell, Graphs with prescribed connectivity and line graph connectivity. J. Graph Theory 3 (1979) 393–395. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalák and L.S. Ram, Network discovery and verification. IEEE J. Sel. Areas Commun. 24 (2006) 2168–2181. [CrossRef] [Google Scholar]
- Y. Bejerano and R. Rastogi, Robust monitoring of link delays and faults in IP networks. IEEE/ACM Trans. Netw. 14 (2006) 1092–1103. [CrossRef] [Google Scholar]
- I. Bhattacharya and S. Gupta, Intelligent friendship graphs: a theoretical framework, in International Conference on Soft Computing and its Engineering Applications(icSoftComp). Springer International Publishing, Cham (2021) 90–102. [Google Scholar]
- D. Bilò, T. Erlebach, M. Mihalák and P. Widmayer, Discovery of network properties with all-shortest-paths queries. Theor. Comput. Sci. 411 (2010) 1626–1637. [CrossRef] [Google Scholar]
- J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244. Springer (2008). [CrossRef] [Google Scholar]
- M. Capobianco, J. Molluzzo and C. John, Examples and counterexamples in graph theory. J. Graph Theory 2 (1978) 274–274. [CrossRef] [Google Scholar]
- A. Chapman, Semi-Autonomous Networks: Controllability and Observability of Cartesian Product Networks. Springer (2015). [Google Scholar]
- G. Chartrand and M. Stewart, The connectivity of line graphs. Math. Ann. 182 (1969) 170–174. [CrossRef] [MathSciNet] [Google Scholar]
- F. Comellas, J. Ozóna and J.G. Peters, Deterministic small-world communication networks. Inf. Process Lett. 76 (2000) 83–90. [CrossRef] [Google Scholar]
- L. Dall’Asta, J.I. Alvarez-Hamelin, A. Barrat, A. Vázquez and A. Vespignani, Exploring networks with traceroute-like probes: theory and simulations. Theor. Comput. Sci. 355 (2006) 6–24. [CrossRef] [Google Scholar]
- M. Fiaz, R. Yousaf, M. Hanfi, W. Asif, H. Qureshi and M. Rajarajan, Adding the reliability on tree based topology construction algorithms for wireless sensor networks. Wirel. Pers. Commun. 74 (2014) 989–1004. [CrossRef] [Google Scholar]
- F. Foucaud, S.S Kao, R. Klasing, M. Miller and J. Ryan, Monitoring the edges of a graph using distances. Discrete Appl. Math. 319 (2022) 424–438. [CrossRef] [MathSciNet] [Google Scholar]
- R. Govindan and H. Tangmunarunkit, Heuristics for Internet map discovery, in Proceedings of the 19th IEEE International Conference on Computer Communications. INFOCOM’00. IEEE (2000) 1371–1380. [Google Scholar]
- F. Harary and R.A. Melter, On the metric dimension of a graph. ARS Comb. 2 (1976) 191–195. [Google Scholar]
- P. Hou, H. Zhao, Y. Mao and Z. Wang, A small-world network derived from the deterministic uniform recursive tree by line graph operation. Phys. A 49 (2016) 115101. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Ji, R. Klasing, W. Li, Y. Mao and X. Zhang, Erdös-Gallai-type problems for distance-edge-monitoring numbers. Discrete Appl. Math. 342 (2024) 275–285. [CrossRef] [MathSciNet] [Google Scholar]
- S. Jung, S. Kim and B. Kahng, A geometric fractal growth model for scale free networks. Phys. Rev. E 65 (2002) 056101. [Google Scholar]
- A. Kelenc, D. Kuziak, A. Taranenko and I.G. Yero, Mixed metric dimension of graphs. Appl. Math. Comput. 314 (2017) 429–438. [MathSciNet] [Google Scholar]
- A. Kelenc, N. Tratnik and I.G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension. Discrete Appl. Math. 251 (2018) 204–220. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Li and Y. Mao, A result on the 3-generalized connectivity of a graph and its line graph. Bull. Malay. Math. Sci. Soc. 41 (2018) 2019–2027. [CrossRef] [Google Scholar]
- W. Li, R. Klasing, Y. Mao and B. Ning, Monitoring the edges of product networks using distances. Available at arXiv: https://arxiv.org/pdf/2211.10743.pdf. [Google Scholar]
- Z. Lu and S. Guo, A small-world network derived from the deterministic uniform recursive tree. Phys. A 391 (2012) 87–92. [CrossRef] [MathSciNet] [Google Scholar]
- D. Ma, Y. Xu, C. Chiu, N. Regnault, A. Houck, Z. Song and B. Bernevig, Spin-Orbit-Induced topological flat bands in line and split graphs of bipartite lattices. Phys. Rev. Lett. 125 (2020) 266403. [CrossRef] [PubMed] [Google Scholar]
- J. Martín, V. Mitrana and M. Păun, Networks of evolutionary processors: wheel graph simulation. J. Membr. Comput. 5 (2023) 221–237. [CrossRef] [MathSciNet] [Google Scholar]
- J. Navaridas, J. Miguel-Alonso, F.J. Ridruejo and W. Denzel, Reducing complexity in tree-like computer interconnection networks. Parallel Comput. 36 (2010) 71–85. [CrossRef] [Google Scholar]
- M.E.J. Newman and D.J. Watts, Renormalization group analysis of the small-world network model. Phys. Lett. A 263 (1999) 341–346. [CrossRef] [MathSciNet] [Google Scholar]
- Y.M. Parmar, Edge vertex prime labeling for wheel, fan and friendship graph. Int. J. Math. Stat. Invention (IJMSI) 5 (2017) 23–29. [Google Scholar]
- E. Prizner, Line graphs, and generalizations – a survey. Congr. Numer. 116 (1996) 193–229. [MathSciNet] [Google Scholar]
- A. Sarfraz, On the evaluation of a subdivision of the ladder graph. Punjab Univ. J. Math. (Lahore) 47 (2015) 15–19. [MathSciNet] [Google Scholar]
- P.J. Slater, Leaves of trees. Congr. Numer. 14 (1975) 549–559. [Google Scholar]
- F. Tarissan, B. Quoitin, P. Mérindol, B. Donnet, J. Pansiot and M. Latapy, Towards a bipartite graph modeling of the internet topology. Comput. Netw. 57 (2013) 2331–2347. [CrossRef] [Google Scholar]
- C. Yang, R. Klasing, Y. Mao and X. Deng, On the distance-edge-monitoring numbers of graphs. Discrete Appl. Math. 342 (2024) 153–167. [CrossRef] [MathSciNet] [Google Scholar]
- G. Yang, J. Zhou, C. He and Y. Mao, Distance-edge-monitoring numbers of networks. Acta Inf. 61 (2024) 183–198. [CrossRef] [Google Scholar]
- S. Yu, D. Huang, W. Singer and D. Nikolić, A small world of neuronal synchrony. Cereb. Cortex 18 (2008) 2891–2901. [CrossRef] [PubMed] [Google Scholar]
- Z.Z. Zhang, S.G. Zhou, Y. Qi and J.H. Guan, Topologies and laplacian spectra of a deterministic uniform recursive tree. Eur. Phys. J. B 63 (2008) 507–513. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.