Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
Page(s) 3659 - 3673
DOI https://doi.org/10.1051/ro/2024115
Published online 10 September 2024
  • W. Achtziger and C. Kanzow, Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114 (2008) 69–99. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Antczak, On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems. Comput. Appl. Math. 36 (2017) 1299–1314. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Baier, E. Farkhi and V. Roshchina, The directed and Rubinov subdifferentials of quasidifferentiable functions, Part II: Calculus. Nonlinear Anal. Theory Methods App. 75 (2012) 1058–1073. [CrossRef] [Google Scholar]
  • R.I. Bot¸ and A. Heinrich, Regression tasks in machine learning via Fenchel duality. Ann. Oper. Res. 222 (2014) 197–211. [CrossRef] [MathSciNet] [Google Scholar]
  • B.D. Craven, On quasidifferentiable optimization. J. Aust. Math. Soc. 41 (1986) 64–78. [CrossRef] [Google Scholar]
  • V.F. Demyanov and A.M. Rubinov, On quasidifferentiable functional. Doklady Akademii Naubk 250 (1980) 21–25 (translated in Soviet Mathematics Doklady 21:14–17). [Google Scholar]
  • V.F. Demyanov and A.M. Rubinov, Constructive nonsmooth analysis, in Approximation and Optimization, Vol. 7. Verlag Peter Lang, Frankfurt/Main (1995), Russian original “Foundations of Nonsmooth Analysis, and Quasidifferential Calculus” published in Nauka, Moscow (1990). [Google Scholar]
  • V.F. Demyanov and A.M. Rubinov, editors. Quasidifferentiability and Related Topics, Nonconvex Optimization and Its Applications. Vol. 43. Springer, Boston, MA (2000). [CrossRef] [Google Scholar]
  • V.F. Demyanov, G.E. Stavroulakis, L.N. Polyakova and P.D. Panagiotopoulos, Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics, Nonconvex Optimization and Its Applications. Vol. 10. Springer, US (1996). [CrossRef] [Google Scholar]
  • D. Dorsch, V. Shikhman and O. Stein, Mathematical programs with vanishing constraints: critical point theory. J. Global Optim. 52 (2012) 591–605. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Gao, Demyanov difference of two sets and optimality conditions of Lagrange multiplier type for constrained quasidifferentiable optimization. J. Optim. Theory App. 104 (2000) 377. [CrossRef] [Google Scholar]
  • M. Ghobadzadeh, N. Kanzi and K. Fallahi, Wolfe type duality for nonsmooth optimization problems with vanishing constraints. J. Math. Extension 16 (2022). [Google Scholar]
  • M. Hassan, J.K. Maurya and S.K. Mishra, On m-stationary conditions and duality for multiobjective mathematical programs with vanishing constraints. Bull. Malaysian Math. Sci. Soc. 45 (2022) 1315–1341. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Hoheisel and C. Kanzow, First-and second-order optimality conditions for mathematical programs with vanishing constraints. App. Math. 52 (2007) 495–514. [CrossRef] [Google Scholar]
  • H. Idrissi, O. Lefebvre and C. Michelot, Duality for constrained multifacility location problems with mixed norms and applications. Ann. Oper. Res. 18 (1989) 71–92. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Ito, Y. Liu and K.L. Teo, A dual parametrization method for convex semi-infinite programming. Ann. Oper. Res. 98 (2000) 189–213. [Google Scholar]
  • T.R. Jefferson and C.H. Scott, Quality tolerancing and conjugate duality. Ann. Oper. Res. 105 (2001) 185–200. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Kazemi and N. Kanzi, Constraint qualifications and stationary conditions for mathematical programming with non-differentiable vanishing constraints. J. Optim. Theory App. 179 (2018) 800–819. [CrossRef] [Google Scholar]
  • S. Kazemi, N. Kanzi and A. Ebadian, Estimating the Frechet normal cone in optimization problems with nonsmooth vanishing constraints. Iran. J. Sci. Technol. Trans. A Sci. 43 (2019) 2299–2306. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Laha, H.N. Singh and S.K. Mishra, On quasidifferentiable mathematical programs with vanishinng constraints, revised version submitted (2022). [Google Scholar]
  • V. Laha, V. Singh, Y. Pandey and S.K. Mishra, Nonsmooth mathematical programs with vanishing constraints in Banach spaces, in High-Dimensional Optimization and Probability: With a View Towards Data Science, Cham: Springer International Publishing (2022) 395–417. [Google Scholar]
  • K.K. Lai, M. Hassan, S.K. Singh, J.K. Maurya and S.K. Mishra, Semidefinite multiobjective mathematical programming problems with vanishing constraints using convexificators. Fractal Fractional 6 (2021) 3. [CrossRef] [Google Scholar]
  • S.K. Mishra and G. Giorgi, Invexity and Optimization. Vol. 88. Springer Science and Business Media (2008). [Google Scholar]
  • S.K. Mishra, S. Wang and K.K. Lai, V-invex Functions and Vector Optimization. Vol. 14. Springer Science and Business Media (2007). [Google Scholar]
  • S.K. Mishra, V. Singh and V. Laha, On duality for mathematical programs with vanishing constraints. Ann. Oper. Res. 243 (2016) 249–272. [CrossRef] [MathSciNet] [Google Scholar]
  • S.R. Mohan and S.K. Neogy, On invex sets and preinvex functions. J. Math. Anal. App. 189 (1995) 901–908. [CrossRef] [Google Scholar]
  • B. Mond and T. Weir, Generalized Concavity and Duality, Generalized Concavity in Optimization and Economics. Academic Press, New York (1981) 263–279. [Google Scholar]
  • R.T. Rockafellar, Duality and optimality in multistagestochastic programming. Ann. Oper. Res. 85 (1999) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Sadeghieh, N. Kanzi and G. Caristi, On stationarity for nonsmooth multiobjective problems with vanishing constraints. J. Glob. Optim. 82 (2022) 929–949. [CrossRef] [Google Scholar]
  • J. Shaker Ardakani, S.H. Farahmand Rad, N. Kanzi and P. Reihani Ardabili, Necessary stationary conditions for multiobjective optimization problems with nondifferentiable convex vanishing constraints. Iran. J. Sci. Technol. Trans. A Sci. 43 (2019) 2913–2919. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Shapiro, On optimality conditions in quasidifferentiable optimization. SIAM J. Control Optim. 22 (1984) 610–617. [CrossRef] [MathSciNet] [Google Scholar]
  • H.N. Singh and V. Laha, On quasidifferentiable multiobjective fractional programming. Iran. J. Sci. Technol. Trans. A Sci. 46 (2022) 917–925. [CrossRef] [MathSciNet] [Google Scholar]
  • H.N. Singh and V. Laha, On minty variational principle for quasidifferentiable vector optimization problems. Optim. Methods Softw. 38 (2023) 243–261. [CrossRef] [MathSciNet] [Google Scholar]
  • G.E. Stavroulakis, V.F. Dem’yanov and L.N. Polyakova, Quasidifferentiability in nonsmooth, nonconvex mechanics. J. Global Optim. 6 (1995) 327–345. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Uderzo, Multidirectional mean value inequalities in quasidifferential calculus. Numer. Funct. Anal. Optim. 26 (2005) 709–733. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Wolfe, A duality theorem for non-linear programming. Q. Appl. Math. 19 (1961) 239–244. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.